Eukaryotic Transcription
   HOME

TheInfoList



OR:

Eukaryotic transcription is the elaborate process that
eukaryotic Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
cells use to copy genetic information stored in DNA into units of transportable
complementary A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class ...
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
replica. Gene transcription occurs in both eukaryotic and
prokaryotic A prokaryote () is a Unicellular organism, single-celled organism that lacks a cell nucleus, nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek language, Greek wikt:πρό#Ancient Greek, πρό (, 'before') a ...
cells. Unlike prokaryotic RNA polymerase that initiates the transcription of all different types of RNA, RNA polymerase in eukaryotes (including humans) comes in three variations, each translating a different type of gene. A eukaryotic cell has a nucleus that separates the processes of transcription and
translation Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
. Eukaryotic transcription occurs within the nucleus where DNA is packaged into
nucleosomes A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone proteins and resembles thread wrapped around a spool. The nucleosome is the fundamen ...
and higher order
chromatin Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in r ...
structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control. Eukaryotic transcription proceeds in three sequential stages: initiation, elongation, and termination. The RNAs transcribed serve diverse functions. For example, structural components of the ribosome are transcribed by RNA polymerase I. Protein coding genes are transcribed by RNA polymerase II into messenger RNAs (mRNAs) that carry the information from DNA to the site of protein synthesis. More abundantly made are the so-called
non-coding RNA A non-coding RNA (ncRNA) is a functional RNA molecule that is not Translation (genetics), translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally im ...
s account for the large majority of the transcriptional output of a cell. These non-coding RNAs perform a variety of important cellular functions.


RNA polymerase

Eukaryotes have three nuclear RNA polymerases, each with distinct roles and properties. RNA polymerase I (Pol I) catalyses the transcription of all rRNA genes except 5S. These rRNA genes are organised into a single transcriptional unit and are transcribed into a continuous transcript. This precursor is then processed into three rRNAs: 18S, 5.8S, and 28S. The transcription of rRNA genes takes place in a specialised structure of the nucleus called the nucleolus, where the transcribed rRNAs are combined with proteins to form
ribosomes Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to f ...
. RNA polymerase II (Pol II) is responsible for the transcription of all mRNAs, some snRNAs, siRNAs, and all miRNAs. Many Pol II transcripts exist transiently as single strand precursor RNAs (pre-RNAs) that are further processed to generate mature RNAs. For example,
precursor mRNA Precursor or Precursors may refer to: *Precursor (religion), a forerunner, predecessor ** The Precursor, John the Baptist Science and technology * Precursor (bird), a hypothesized genus of fossil birds that was composed of fossilized parts of unr ...
s (pre-mRNAs) are extensively processed before exiting into the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. The ...
through the
nuclear pore A nuclear pore is a part of a large complex of proteins, known as a nuclear pore complex that spans the nuclear envelope, which is the double membrane surrounding the eukaryotic cell nucleus. There are approximately 1,000 nuclear pore complexe ...
for protein translation. RNA polymerase III (Pol III) transcribes small non-coding RNAs, including tRNAs, 5S rRNA, U6 snRNA, SRP RNA, and other stable short RNAs such as
ribonuclease P Ribonuclease P (, ''RNase P'') is a type of ribonuclease which cleaves RNA. RNase P is unique from other RNases in that it is a ribozyme – a ribonucleic acid that acts as a catalyst in the same way that a protein-based enzyme would. Its fu ...
RNA. RNA Polymerases I, II, and III contain 14, 12, and 17 subunits, respectively. All three eukaryotic polymerases have five core subunits that exhibit homology with the β, β’, αI, αII, and ω subunits of E. coli RNA polymerase. An identical ω-like subunit (RBP6) is used by all three eukaryotic polymerases, while the same α-like subunits are used by Pol I and III. The three eukaryotic polymerases share four other common subunits among themselves. The remaining subunits are unique to each RNA polymerase. The additional subunits found in Pol I and Pol III relative to Pol II, are homologous to Pol II transcription factors. Crystal structures of RNA polymerases I and II provide an opportunity to understand the interactions among the subunits and the molecular mechanism of eukaryotic transcription in atomic detail. The carboxyl terminal domain (CTD) of RPB1, the largest subunit of RNA polymerase II, plays an important role in bringing together the machinery necessary for the synthesis and processing of Pol II transcripts. Long and structurally disordered, the CTD contains multiple repeats of heptapeptide sequence YSPTSPS that are subject to
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
and other
posttranslational modification Post-translational modification (PTM) is the covalent and generally enzymatic modification of proteins following protein biosynthesis. This process occurs in the endoplasmic reticulum and the golgi apparatus. Proteins are synthesized by ribosome ...
s during the transcription cycle. These modifications and their regulation constitute the operational code for the CTD to control transcription initiation, elongation and termination and to couple transcription and RNA processing.


Initiation

The initiation of gene transcription in eukaryotes occurs in specific steps. First, an RNA polymerase along with general
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fu ...
s binds to the promoter region of the gene to form a closed complex called the preinitiation complex. The subsequent transition of the complex from the closed state to the open state results in the melting or separation of the two DNA strands and the positioning of the template strand to the active site of the RNA polymerase. Without the need of a primer, RNA polymerase can initiate the synthesis of a new RNA chain using the template DNA strand to guide ribonucleotide selection and polymerization chemistry. However, many of the initiated syntheses are aborted before the transcripts reach a significant length (~10 nucleotides). During these abortive cycles, the polymerase keeps making and releasing short transcripts until it is able to produce a transcript that surpasses ten nucleotides in length. Once this threshold is attained, RNA polymerase passes the promoter and transcription proceeds to the elongation phase.


Eukaryotic promoters and general transcription factors

Pol II-transcribed genes contain a region in the immediate vicinity of the transcription start site (TSS) that binds and positions the preinitiation complex. This region is called the core promoter because of its essential role in transcription initiation. Different classes of sequence elements are found in the promoters. For example, the
TATA box In molecular biology, the TATA box (also called the Goldberg–Hogness box) is a sequence of DNA found in the core promoter region of genes in archaea and eukaryotes. The bacterial homolog of the TATA box is called the Pribnow box which has ...
is the highly conserved DNA recognition sequence for the TATA box binding protein, TBP, whose binding initiates transcription complex assembly at many genes. Eukaryotic genes also contain regulatory sequences beyond the core promoter. These cis-acting control elements bind transcriptional activators or repressors to increase or decrease transcription from the core promoter. Well-characterized regulatory elements include
enhancers In genetics, an enhancer is a short (50–1500 bp) region of DNA that can be bound by proteins ( activators) to increase the likelihood that transcription of a particular gene will occur. These proteins are usually referred to as transcriptio ...
, silencers, and
insulators Insulator may refer to: * Insulator (electricity), a substance that resists electricity ** Pin insulator, a device that isolates a wire from a physical support such as a pin on a utility pole ** Strain insulator, a device that is designed to work ...
. These regulatory sequences can be spread over a large genomic distance, sometimes located hundreds of kilobases from the core promoters. General transcription factors are a group of proteins involved in transcription initiation and regulation. These factors typically have DNA-binding domains that bind specific sequence elements of the core promoter and help recruit RNA polymerase to the transcriptional start site. General transcription factors for RNA polymerase II include
TFIID Transcription factor II D (TFIID) is one of several general transcription factors that make up the RNA polymerase II preinitiation complex. RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters o ...
,
TFIIA Transcription factor TFIIA is a nuclear protein involved in the RNA polymerase II-dependent transcription of DNA. TFIIA is one of several general (basal) transcription factors ( GTFs) that are required for all transcription events that use RNA ...
,
TFIIB Transcription factor II B (TFIIB) is a general transcription factor that is involved in the formation of the RNA polymerase II preinitiation complex (PIC) and aids in stimulating transcription initiation. TFIIB is localised to the nucleus and pr ...
,
TFIIF Transcription factor II F (TFIIF) is one of several general transcription factors that make up the RNA polymerase II preinitiation complex. TFIIF is encoded by the , , and genes. TFIIF binds to RNA polymerase II RNA polymerase II (RNAP II ...
,
TFIIE Transcription factor II E (TFIIE) is one of several general transcription factors that make up the RNA polymerase II preinitiation complex. It is a tetramer of two alpha and two beta chains and interacts with TAF6/TAFII80, ATF7IP, and varicella ...
, and
TFIIH Transcription factor II Human (transcription factor II H; TFIIH) is an important protein complex, having roles in transcription of various protein-coding genes and DNA nucleotide excision repair (NER) pathways. TFIIH first came to light in 1989 ...
.


Assembly of preinitiation complex

The transcription, a complete set of general transcription factors and RNA polymerase need to be assembled at the core promoter to form the ~2.5 million dalton preinitiation complex. For example, for promoters that contain a TATA box near the TSS, the recognition of TATA box by the TBP subunit of TFIID initiates the assembly of a transcription complex. The next proteins to enter are TFIIA and TFIIB, which stabilize the DNA-TFIID complex and recruit Pol II in association with TFIIF and additional transcription factors. TFIIB serves as the bridge between the TATA-bound TBP and polymerase and helps place the active center of the polymerase in the correct position to initiate transcription. One of the last transcription factors to be recruited to the preinitiation complex is TFIIH, which plays an important role in promoter melting and escape.


Promoter melting and open complex formation

For pol II-transcribed genes, and unlike bacterial RNA polymerase, promoter melting requires hydrolysis of ATP and is mediated by TFIIH. TFIIH is a ten-subunit protein, including both
ATPase ATPases (, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca2+ + Mg2+)-ATPase, HCO3−-ATPase, adenosine triphosphatase) are ...
and
protein kinase A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fu ...
activities. While the upstream promoter DNA is held in a fixed position by TFIID, TFIIH pulls downstream double-stranded DNA into the cleft of the polymerase, driving the separation of DNA strands and the transition of the preinitiation complex from the closed to open state. TFIIB aids in open complex formation by binding the melted DNA and stabilizing the
transcription bubble A transcription bubble is a molecular structure formed during DNA transcription when a limited portion of the DNA double helix is unwound. The size of a transcription bubble ranges from 12-14 base pairs. A transcription bubble is formed when the ...
.


Abortive initiation

Once the initiation complex is open, the first ribonucleotide is brought into the active site to initiate the polymerization reaction in the absence of a primer. This generates a nascent RNA chain that forms a hetero-duplex with the template DNA strand. However, before entering the elongation phase, polymerase may terminate prematurely and release a short, truncated transcript. This process is called abortive initiation. Many cycles of abortive initiation may occur before the transcript grows to sufficient length to promote polymerase escape from the promoter. Throughout abortive initiation cycles, RNA polymerase remains bound to the promoter and pulls downstream DNA into its catalytic cleft in a scrunching-kind of motion.


Promoter escape

When a transcript attains the threshold length of ten nucleotides, it enters the RNA exit channel. The polymerase breaks its interactions with the promoter elements and any regulatory proteins associated with the initiation complex that it no longer needs. Promoter escape in eukaryotes requires ATP hydrolysis and, in the case of Pol II-phosphorylation of the CTD. Meanwhile, the transcription bubble collapses down to 12-14 nucleotides, providing kinetic energy required for the escape.


Elongation

After escaping the promoter and shedding most of the transcription factors for initiation, the polymerase acquires new factors for the next phase of transcription: elongation. Transcription elongation is a processive process. Double stranded DNA that enters from the front of the enzyme is unzipped to avail the template strand for RNA synthesis. For every DNA
base pair A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA ...
separated by the advancing polymerase, one hybrid RNA:DNA base pair is immediately formed. DNA strands and nascent RNA chain exit from separate channels; the two DNA strands reunite at the trailing end of the transcription bubble while the single strand RNA emerges alone.


Elongation factors

Among the proteins recruited to polymerase are elongation factors, thus called because they stimulate transcription elongation. There are different classes of elongation factors. Some factors can increase the overall rate of transcribing, some can help the polymerase through transient pausing sites, and some can assist the polymerase to transcribe through chromatin. One of the elongation factors,
P-TEFb The positive transcription elongation factor, P-TEFb, is a multiprotein complex that plays an essential role in the regulation of transcription by RNA polymerase II (Pol II) in eukaryotes. Immediately following initiation Pol II becomes trapped in ...
, is particularly important. P-TEFb phosphorylates the second residue (Ser-2) of the CTD repeats (YSPTSPS) of the bound Pol II. P-TEFb also phosphorylates and activates SPT5 and TAT-SF1. SPT5 is a universal transcription factor that helps recruit 5'-capping enzyme to Pol II with a CTD phosphorylated at Ser-5. TAF-SF1 recruits components of the RNA splicing machinery to the Ser-2 phosphorylated CTD. P-TEFb also helps suppress transient pausing of polymerase when it encounters certain sequences immediately following initiation.


Transcription fidelity

Transcription fidelity is achieved through multiple mechanisms. RNA polymerases select correct
nucleoside triphosphate A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar (either ribose or deoxyribose), with three phosphate groups bound to the sugar. They are the molecular precursors of both DNA and RNA, which are cha ...
(NTP) substrate to prevent transcription errors. Only the NTP which correctly base pairs with the coding base in the DNA is admitted to the active center. RNA polymerase performs two known proof reading functions to detect and remove misincorporated nucleotides: pyrophosphorylytic editing and hydrolytic editing. The former removes the incorrectly inserted ribonucleotide by a simple reversal of the polymerization reaction, while the latter involves backtracking of the polymerase and cleaving of a segment of error-containing RNA product. Elongation factor TFIIS (;
TCEA1 Transcription elongation factor A protein 1 is a protein that in humans is encoded by the ''TCEA1'' gene. In other organisms, this gene is better known as transcription elongation factor II S (TFIIS). It mainly helps to resolve backtracked elonga ...
, TCEA2, TCEA3) stimulates an inherent ribonuclease activity in the polymerase, allowing the removal of misincorporated bases through limited local RNA degradation. Note that all reactions (phosphodiester bond synthesis, pyrophosphorolysis, phosphodiester bond hydrolysis) are performed by RNA polymerase by using a single active center.


Pausing, poising, and backtracking

Transcription elongation is not a smooth ride along double stranded DNA , as RNA polymerase undergoes extensive co-transcriptional pausing during transcription elongation. In general, RNA polymerase II does not transcribe through a gene at a constant pace. Rather it pauses periodically at certain sequences, sometimes for long periods of time before resuming transcription. This pausing is especially pronounced at nucleosomes, and arises in part through the polymerase entering a transcriptionally incompetent backtracked state. The duration of these pauses ranges from seconds to minutes or longer, and exit from long-lived pauses can be promoted by elongation factors such as TFIIS. This pausing is also sometimes used for proofreading; here the polymerase backs up, erases some of the RNA it has already made and has another go at transcription. In extreme cases, for example, when the polymerase encounters a damaged nucleotide, it comes to a complete halt. More often, an elongating polymerase is stalled near the promoter. Promoter-proximal pausing during early elongation is a commonly used mechanism for regulating genes poised to be expressed rapidly or in a coordinated fashion. Pausing is mediated by a complex called NELF (negative elongation factor) in collaboration with DSIF (DRB-sensitivity-inducing factor containing SPT4/SPT5). The blockage is released once the polymerase receives an activation signal, such as the phosphorylation of Ser-2 of CTD tail by P-TEFb. Other elongation factors such as ELL and TFIIS stimulate the rate of elongation by limiting the length of time that polymerase pauses.


RNA processing

Elongating polymerase is associated with a set of protein factors required for various types of RNA processing. mRNA is capped as soon as it emerges from the RNA-exit channel of the polymerase. After capping, dephosphorylation of Ser-5 within the CTD repeats may be responsible for dissociation of the capping machinery. Further phosphorylation of Ser-2 causes recruitment of the RNA splicing machinery that catalyzes the removal of non-coding introns to generate mature mRNA. Alternative splicing expands the protein complements in eukaryotes. Just as with 5’-capping and splicing, the CTD tail is involved in recruiting enzymes responsible for 3’-polyadenylation, the final RNA processing event that is coupled with the termination of transcription.


Termination

The last stage of transcription is termination, which leads to the dissociation of the complete transcript and the release of RNA polymerase from the template DNA.The process differs for each of the three RNA polymerases. The mechanism of termination is the least understood of the three transcription stages.


Factor-dependent

The termination of transcription of pre-rRNA genes by polymerase Pol I is performed by a system that needs a specific transcription termination factor. The mechanism used bears some resemblance to the rho-dependent termination in prokaryotes. Eukaryotic cells contain hundreds of ribosomal DNA repeats, sometimes distributed over multiple chromosomes. Termination of transcription occurs in the ribosomal intergenic spacer region that contains several transcription termination sites upstream of a Pol I pausing site. Through a yet unknown mechanism, the 3’-end of the transcript is cleaved, generating a large primary rRNA molecule that is further processed into the mature 18S, 5.8S and 28S rRNAs. As Pol II reaches the end of a gene, two protein complexes carried by the CTD, CPSF (cleavage and polyadenylation specificity factor) and CSTF (cleavage stimulation factor), recognize the poly-A signal in the transcribed RNA. Poly-A-bound CPSF and CSTF recruit other proteins to carry out RNA cleavage and then polyadenylation. Poly-A polymerase adds approximately 200 adenines to the cleaved 3’ end of the RNA without a template. The long poly-A tail is unique to transcripts made by Pol II. In the process of terminating transcription by Pol I and Pol II, the elongation complex does not dissolve immediately after the RNA is cleaved. The polymerase continues to move along the template, generating a second RNA molecule associated with the elongation complex. Two models have been proposed to explain how termination is achieved at last. The allosteric model states that when transcription proceeds through the termination sequence, it causes disassembly of elongation factors and/or an assembly of termination factors that cause conformational changes of the elongation complex. The torpedo model suggests that a 5' to 3'
exonuclease Exonucleases are enzymes that work by cleaving nucleotides one at a time from the end (exo) of a polynucleotide chain. A hydrolyzing reaction that breaks phosphodiester bonds at either the 3′ or the 5′ end occurs. Its close relative is the ...
degrades the second RNA as it emerges from the elongation complex. Polymerase is released as the highly processive exonuclease overtakes it. It is proposed that an emerging view will express a merge of these two models.


Factor-independent

RNA polymerase III can terminate transcription efficiently without the involvement of additional factors. The Pol III termination signal consists of a stretch of
thymine Thymine () ( symbol T or Thy) is one of the four nucleobases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine nu ...
s (on the nontemplate strand) located within 40bp downstream from the 3' end of mature RNAs. The poly-T termination signal pauses Pol III


Eukaryotic transcriptional control

The
regulation of gene expression Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are wide ...
in eukaryotes is achieved through the interaction of several levels of control that acts both locally to turn on or off individual genes in response to a specific cellular need and globally to maintain a chromatin-wide gene expression pattern that shapes cell identity. Because eukaryotic genome is wrapped around
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn a ...
s to form nucleosomes and higher-order chromatin structures, the substrates for transcriptional machinery are in general partially concealed. Without regulatory proteins, many genes are expressed at low level or not expressed at all. Transcription requires displacement of the positioned nucleosomes to enable the transcriptional machinery to gain access of the DNA. All steps in the transcription are subject to some degree of regulation. Transcription initiation in particular is the primary level at which gene expression is regulated. Targeting the rate-limiting initial step is the most efficient in terms of energy costs for the cell. Transcription initiation is regulated by cis-acting elements ( enhancers, silencers, isolators) within the regulatory regions of the DNA, and sequence-specific trans-acting factors that act as activators or repressors. Gene transcription can also be regulated post-initiation by targeting the movement of the elongating polymerase.


Global control and epigenetic regulation

The eukaryotic genome is organized into a compact chromatin structure that allows only regulated access to DNA. The chromatin structure can be globally "open" and more transcriptionally permissive, or globally "condensed" and transcriptionally inactive. The former (
euchromatin Euchromatin (also called "open chromatin") is a lightly packed form of chromatin ( DNA, RNA, and protein) that is enriched in genes, and is often (but not always) under active transcription. Euchromatin stands in contrast to heterochromatin, whic ...
) is lightly packed and rich in genes under active transcription. The latter (
heterochromatin Heterochromatin is a tightly packed form of DNA or '' condensed DNA'', which comes in multiple varieties. These varieties lie on a continue between the two extremes of constitutive heterochromatin and facultative heterochromatin. Both play a role ...
) includes gene-poor regions such as
telomere A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes. Although there are different architectures, telomeres, in a broad sense, are a widespread genetic feature mos ...
s and
centromere The centromere links a pair of sister chromatids together during cell division. This constricted region of chromosome connects the sister chromatids, creating a short arm (p) and a long arm (q) on the chromatids. During mitosis, spindle fibers a ...
s but also regions with normal gene density but transcriptionally silenced. Transcription can be silenced by
histone modification In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn ar ...
( deacetylation and
methylation In the chemical sciences, methylation denotes the addition of a methyl group on a substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These t ...
),
RNA interference RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression by double-stranded RNA, through translational or transcriptional repression. Historically, RNAi was known by o ...
, and/or
DNA methylation DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts t ...
. The gene expression patterns that define cell identity are inherited through cell division. This process is called epigenetic regulation. DNA methylation is reliably inherited through the action of maintenance methylases that modify the nascent DNA strand generated by replication. In mammalian cells, DNA methylation is the primary marker of transcriptionally silenced regions. Specialized proteins can recognize the marker and recruit
histone deacetylases Histone deacetylases (, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on a histone, allowing the histones to wrap the DNA more tightly. This is important because DNA is wrapped around his ...
and methylases to re-establish the silencing. Nucleosome histone modifications could also be inherited during cell division, however, it is not clear whether it can work independently without the direction by DNA methylation.


Gene-specific activation

The two main tasks of transcription initiation are to provide RNA polymerase with an access to the promoter and to assemble general transcription factors with polymerase into a transcription initiation complex. Diverse mechanisms of initiating transcription by overriding inhibitory signals at the gene promoter have been identified. Eukaryotic genes have acquired extensive regulatory sequences that encompass a large number of regulator-binding sites and spread overall kilobases (sometimes hundreds of kilobases) from the promoter–-both upstream and downstream. The regulator binding sites are often clustered together into units called enhancers. Enhancers can facilitate highly cooperative action of several transcription factors (which constitute enhanceosomes). Remote enhancers allow transcription regulation at a distance. Insulators situated between enhancers and promoters help define the genes that an enhancer can or cannot influence. Eukaryotic transcriptional activators have separate DNA-binding and activating functions. Upon binding to its cis-element, an activator can recruit polymerase directly or recruit other factors needed by the transcriptional machinery. An activator can also recruit nucleosome modifiers that alter chromatin in the vicinity of the promoter and thereby help initiation. Multiple activators can work together, either by recruiting a common or two mutually dependent components of the transcriptional machinery, or by helping each other bind to their DNA sites. These interactions can synergize multiple signaling inputs and produce intricate transcriptional responses to address cellular needs.


Gene-specific repression

Eukaryotic transcription repressors share some of the mechanisms used by their prokaryotic counterparts. For example, by binding to a site on DNA that overlaps with the binding site of an activator, a repressor can inhibit binding of the activator. But more frequently, eukaryotic repressors inhibit the function of an activator by masking its activating domain, preventing its nuclear localization, promoting its degradation, or inactivating it through chemical modifications. Repressors can directly inhibit transcription initiation by binding to a site upstream of a promoter and interacting with the transcriptional machinery. Repressors can indirectly repress transcription by recruiting histone modifiers (deacetylases and methylases) or nucleosome remodeling enzymes that affect the accessibility of the DNA. Repressing histone and DNA modifications are also the basis of transcriptional silencing that can spread along the chromatin and switch off multiple genes.


Elongation and termination control

The elongation phase starts once assembly of the elongation complex has been completed, and progresses until a termination sequence is encountered. The post-initiation movement of RNA polymerase is the target of another class of important regulatory mechanisms. For example, the transcriptional activator Tat affects elongation rather than initiation during its regulation of
HIV The human immunodeficiency viruses (HIV) are two species of ''Lentivirus'' (a subgroup of retrovirus) that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immune ...
transcription. In fact, many eukaryotic genes are regulated by releasing a block to transcription elongation called promoter-proximal pausing. Pausing can influence chromatin structure at promoters to facilitate gene activity and lead to rapid or synchronous transcriptional responses when cells are exposed to an activation signal. Pausing is associated with the binding of two negative elongation factors, DSIF (SPT4/SPT5) and NELF, to the elongation complex. Other factors can also influence the stability and duration of the paused polymerase. Pause release is triggered by the recruitment of the P-TEFb kinase. Transcription termination has also emerged as an important area of transcriptional regulation. Termination is coupled with the efficient recycling of polymerase. The factors associated with transcription termination can also mediate gene looping and thereby determine the efficiency of re-initiation.


Transcription-coupled DNA repair

When transcription is arrested by the presence of a
lesion A lesion is any damage or abnormal change in the tissue of an organism, usually caused by disease or trauma. ''Lesion'' is derived from the Latin "injury". Lesions may occur in plants as well as animals. Types There is no designated classifi ...
in the transcribed strand of a gene,
DNA repair DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA dam ...
proteins are recruited to the stalled RNA polymerase to initiate a process called transcription-coupled repair. Central to this process is the general transcription factor TFIIH that has ATPase activity. TFIIH causes a conformational change in the polymerase, to expose the transcription bubble trapped inside, in order for the DNA repair enzymes to gain access to the lesion. Thus, RNA polymerase serves as damage-sensing protein in the cell to target repair enzymes to genes that are being actively transcribed.


Comparisons between prokaryotic and eukaryotic transcription

Eukaryotic transcription is more complex than prokaryotic transcription. For instance, in eukaryotes the genetic material (DNA), and therefore transcription, is primarily localized to the nucleus, where it is separated from the cytoplasm (in which translation occurs) by the nuclear membrane. This allows for the temporal regulation of gene expression through the sequestration of the RNA in the nucleus, and allows for selective transport of mature RNAs to the cytoplasm. Bacteria do not have a distinct nucleus that separates DNA from ribosome and mRNA is translated into protein as soon as it is transcribed. The coupling between the two processes provides an important mechanism for prokaryotic gene regulation. At the level of initiation, RNA polymerase in prokaryotes (bacteria in particular) binds strongly to the promoter region and initiates a high basal rate of transcription. No ATP hydrolysis is needed for the close-to-open transition, promoter melting is driven by binding reactions that favor the melted conformation. Chromatin greatly impedes transcription in eukaryotes. Assembly of large multi-protein preinitiation complex is required for promoter-specific initiation. Promoter melting in eukaryotes requires hydrolysis of ATP. As a result, eukaryotic RNA polymerases exhibit a low basal rate of transcription initiation.


Regulation of transcription in cancer

In vertebrates, the majority of gene promoters contain a
CpG island The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases along its 5' → 3' direction. CpG sites occur with high frequency in genomic regions called CpG isl ...
with numerous
CpG site The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases along its 5' → 3' direction. CpG sites occur with high frequency in genomic regions called CpG isl ...
s. When many of a gene's promoter CpG sites are
methylated In the chemical sciences, methylation denotes the addition of a methyl group on a substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These ...
the gene becomes silenced. Colorectal cancers typically have 3 to 6 driver mutations and 33 to 66
hitchhiker Hitchhiking (also known as thumbing, autostop or hitching) is a means of transportation that is gained by asking individuals, usually strangers, for a ride in their car or other vehicle. The ride is usually, but not always, free. Nomads hav ...
or passenger mutations. However, transcriptional silencing may be of more importance than mutation in causing progression to cancer. For example, in colorectal cancers about 600 to 800 genes are transcriptionally silenced by CpG island methylation (see
regulation of transcription in cancer Generally, in progression to cancer, hundreds of genes are silenced or activated. Although silencing of some genes in cancers occurs by mutation, a large proportion of carcinogenic gene silencing is a result of altered DNA methylation (see DNA meth ...
). Transcriptional repression in cancer can also occur by other
epigenetic In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Greek prefix '' epi-'' ( "over, outside of, around") in ''epigenetics'' implies features that are "o ...
mechanisms, such as altered expression of
microRNAs MicroRNA (miRNA) are small, single-stranded, non-coding RNA molecules containing 21 to 23 nucleotides. Found in plants, animals and some viruses, miRNAs are involved in RNA silencing and post-transcriptional regulation of gene expression. miR ...
. In breast cancer, transcriptional repression of
BRCA1 Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the ''BRCA1'' () gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. ''BRCA1'' is a h ...
may occur more frequently by over-expressed microRNA-182 than by hypermethylation of the BRCA1 promoter (see Low expression of BRCA1 in breast and ovarian cancers).


See also

*
Bacterial transcription Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and ...
*
Regulation of gene expression Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are wide ...
*
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that synthesizes RNA from a DNA template. Using the enzyme helicase, RNAP locally opens the ...
*
Transcriptional regulation In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from alt ...
*
Transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fu ...
* Transcriptional memory


References

{{Transcription Gene expression Molecular biology